虽然在输出电压可能高于也可能低于输入电压时,峰值电流模式控制的非连续升降压转换器是LED驱动器的一个不错选择。但是,采用这种升降压转换器来设计驱 动器时,LED电压的变化会改变LED电流,LED开路将导致输出端产生过高的电压,从而损坏转换器。本文将详细讨论这种用于LED的转换器设计,并给出多种克服其固有缺点的方法。
在图4所示电路中,电阻R3和R4构成一个分压器。R4上的电压减去晶体管Q2基极和发射极之间的压降(Vbe)就是R5上的电压。因此,流经R5的电流(IR5)为:
该电流是利用匹配的晶体管对从控制IC的引脚RT获得的。
图4中的电阻R2用于启动转换器。在启动状态下,输出电压为零,因而IR5也为零。由于没有来自控制器RT引脚的电流,所以转换器无法启动。增加电阻R2可以在启动状态下获得一小部分电流,并使R2的大小满足:
IR5>>V(RT)/R2
其中V(RT)是控制器RT引脚上的电压。满足该条件可确保转换器的启动,并将R2带来的误差降至最低。如选R3=R4,则有:
IR5>>VO/2R5
这里假定输出电压比Q2的基极-发射极压降大得多。
这样,根据以上各公式便可以得到输出LED电流为:
iLED=KICLi2pk/(2×2R5)
这样,LED电流将不再决定于输入或输出电压。采用电阻R6、晶体管Q3和齐纳二极管D2可增加过压保护功能。在LED开路状态下,当开关导通 时,电感存储能量,当开关关闭时,该能量转移到输出电容上。因为没有足够的负载供电容放电,输出电压在每个周期都会逐渐升高。当电压升高到超过齐纳二极管 的导通电压时,由D2和R6组成的齐纳二极管分支电路开始导通。这也提供了一条通过Q3基极电流的路径,使Q3导通。此时,电阻R4实际上被短路。因此, Q2的基极发射极的PN结将关闭,导致R5上的电流为零。这将停止控制器的内部振荡直到输出电压降到齐纳二极管电压以下,以上过程继续进行。这种猝发模式 可将LED开路状态下的平均功率降至最小。这种过压保护方法将强制控制IC进入低频、低功率的工作模式。
齐纳二极管电阻分支电路上的电流必须能在R6上产生足够大的电压,以便为晶体管基极-发射极之间的PN结提供偏置。
结束语
在带有输出电流反馈的开关LED驱动器中,一般还需要反馈补偿来稳定转换器,并调节电流以达到期望的电流值。这些反馈方案的瞬态响应性能是有限 的,无法满足LED的PWM亮度调节所需要的快速开/关瞬态响应。然而,本文所描述的转换器并不要求任何反馈补偿。该控制方案所用的唯一反馈信息是通过传 感电阻获得流经MOSFET的峰值电流。因为转换器在每个周期都存储所需的能量,所以它可以对瞬态做出即时响应。因此它可以很方便地与PWM亮度调节方案 一起工作。
升降压转换器是低直流电压输入LED驱动器的有效解决方案,无论输出电压高于还是低于输入电压,它都可以驱动LED串。此外,还可在转换器中增 加小型而低廉的额外电路以克服负载调节和无负载状态下的问题。该转换器易于实现,且在峰值电流模式控制时无需进行反馈补偿没计。它所具有的开环特性也使之 成为那些需要PWM亮度调节的应用中的理想选择。
中国照明网论文频道现向广大业内朋友征集稿件。稿件内容要求具有技术性、可读性。欢迎研究机构、院校、企业进行投稿。
投稿信箱:edit@lightingchina.com.cn
联系电话:0086-020-85530605-5029
(投稿时请注明作者姓名、单位、邮编和地址及电话、E-mail;以便通知审核结果,如发稿七日内无通知请来电查询。)
广东中照网传媒有限公司 版权所有 增值电信业务经营许可证:粤B2-20050039 粤ICP备06007496号
传真:020-85548112 E-mail:Service@lightingchina.com.cn 中国照明网