传统的灯光照明控制系统中单一信道信息量少,准确性和可靠性低,以及不易理解和判读,针对这些问题,本文提出基于小波变换和图像融合的方法,采用动静检测加数字图像融合的照度控制方式,充分利用多源数据的互补性。经过小波变换的融合图像保留了每一个源图像的重要特征,提高了图像质量和清晰度,并将融合图像划分不同区域,提高了环境照场辨识的准确性和可靠性,最后通过与预设数据对比加以调整,从而实现环境现场的智能照度控制。
由此即可判断图像融合后的稳定性。
3. 5 与预设值对比
将融合处理后的图像灰度平均值与预设值进行对比,如果平均值在预设值的误差范围之内,则智能照明系统不做调整; 如果平均值超出预设值误差范围,则智能照明系统做出相应调整,使之调试在相应模式的照度误差范围之内。
4 实验数据分析
本文对上述的两幅室内CCD 图像进行了图像融合仿真,并且提取了智能照明系统所用到的融合图像的有关信息,采用本文提出的小波变换融合算法,其实验融合图像效果对比如图8,图9,图10 所示。
本仿真实验将本文提出的融合算法与其他三种不同的融合算法进行了对比,其数据比较如表1 所示:
表1 中数据可以看出,本文提出的融合算法得到的融合图像更清晰,其他三种融合算法得到的信息熵值都比本文提出的融合算法得到的信息熵值低,小波变换融合算法可以得到更丰富的时域和频域信息,有效的保留了照明区域的细节信息,为智能照明系统提供更全面的数据信息。
5 结语
本文提出采用动静监测和图像融合技术对智能照明系统进行照明控制,图像融合主要采用小波变换算法对采集的图像进行处理,实验表明这种融合算法比其他融合算法的融合效果要好,保留了必要信息,抑制了不需要的信息,为智能照明系统的后续工作提供了良好的图像信息。系统结合图像融合技术,能够根据现场实际情况、人员变动以及天气因素( 阴雨雾雪) 等的变化,实时得进行照明器的调节,在保证足够照度的条件下,也相应降低了智能建筑照明系统的能耗。
中国照明网论文频道现向广大业内朋友征集稿件。稿件内容要求具有技术性、可读性。欢迎研究机构、院校、企业进行投稿。
投稿信箱:edit@lightingchina.com.cn
联系电话:0086-020-85530605-5029
(投稿时请注明作者姓名、单位、邮编和地址及电话、E-mail;以便通知审核结果,如发稿七日内无通知请来电查询。)
广东中照网传媒有限公司 版权所有 增值电信业务经营许可证:粤B2-20050039 粤ICP备06007496号
传真:020-85548112 E-mail:Service@lightingchina.com.cn 中国照明网